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1. Introduction

This report considers the problem of multi-target locdl@ausing transient signals from a
single-sensor as well as multi-sensor point of view. Heigadissumed that target identification is
not possible, and therefore, no association between nmexasuts and targets are available.
Furthermore, the number of targets in the surveillanceore unknown. Additionally, due to
the limited range of the sensors, missed detections cam aoclthe presence of clutter can
induce false alarms. An example of such a scenario is shimat@ization using a network of
acoustic gunfire detection systems (GDS3) (The individual GDSs composed of a passive
array of microphones are able to localize a gunfire event gsoméng the direction of arrival for
both the acoustic wave generated by the muzzle blast andhtok\wave generated by the
supersonic bulletZ=5. Due to echo, reverberation, and the dissipative natutieeodcoustic
signal, missed detections and false alarms are prevalacbunstic source localization.
Furthermore, due to the transient nature of the event, mootis observations are not available
and recursive Bayesian tracking schemes cannot be employed

Conventional multi-target tracking (MTT) approaches IMaltiple Hypothesis Tracking

(MHT) (6, 7) or the Joint Probability Data Association (JPDA) filt&8 ©), which address the
data-association problem, either are too computatiomi@iganding or cannot be applied to the
transient event localization problem since these appemquire persistent measurement
signals and a fixed number of targets. In MHT, all possibleluioations of tracks and data
associations are exhaustively evaluated; thereforeait impractical scheme since the number of
mappings between data and targets will grow exponentiatly the number of targetd.0, 17).
Though more efficient than MHT, JPDA methods are not optinmaesthe detection is performed
separately from tracking and cannot initiate tracks at lmmal-to-clutter ratios12). A
multi-target extension of the simultaneous localizatiod enapping (SLAM) problem for
streaming data is presented by Garcia-Fernandez ét3jl. The multi-target simultaneous
localization and mapping (MSLAM) scheme is based on thellghrzrtition particle filter and it
outperforms the well-known FastSLAM4) when there are multiple targets in the surveillance
area. Jensfelt and Kristenselb) discuss an extension of the MHT, known as the
multi-hypothesis localization (MHL), for mobile robot lakization. The MHL uses a
multi-hypothesis Kalman filter along with a probabilistarinulation of hypothesis correctness to
generate and track Gaussian hypotheses. However, almofstlad MTT techniques are
recursive algorithms that require persistent observatand are futile in dealing with transient



signals.

A finite point process approach known as the probability hiyesis density (PHD) filter,
introduced by MahlerX6), allows a more tractable implementation of multi-targatking
approaches since it only propagates the first-order monie¢héonulti-target density. Moreover,
the PHD filter is able to handle a time-varying number of tesgeissed detections, and false
alarms. Though the track labeling problem is not considaréke PHD filter, a track labeling
method combined with the PHD approach, is proposed by Lih €13 for multi-target tracking.
Since the implementation of an exact PHD filter is intracahlsequential Monte Carlo (SMC)
or particle filtering approach@) and the Gaussian sum filtering scherh8) have been devised
to approximate the PHD filter. Convergence properties ferpdwticle PHD filter and Gaussian
mixture PHD filter are presented in referenc2g) @nd 1), respectively. An SMC
implementation of a finite set statistical filter for the lbzation of an unknown number of
speakers in a multipath environment using time differerfa@mval (TDOA) measurements has
also been proposed§, 22—24. Similar to traditional MTT algorithms, the PHD filter is a
recursive Bayesian approach, which also requires pensisbservations for track update. A
finite point process approach to maximum likelihood basetistarget localization of an
unknown number of targets from transient signals has nat beesidered yet.

Traditionally, multi-target localization involves the mimmum likelihood based approach, where
the selected model yields the maximum likelihood of obseythe given data across a possible
number of targets and all possible target-data assocgatiés the number of sensors increases,
the possible combination of target-data associations altiaadly increases, and the problem often
becomes intractable. Development of a multi-target dieteend localization scheme based on a
probabilistic framework known as modeling field theory (MRS presented by Deming and
Perlovsky 25). Though the computational complexity of a MFT-based appncscales linearly
with the size of the problem, it involves an iterative schesimeilar to the expectation
maximization (EM) and an ad-hoc likelihood ratio test ische@to prune the number of targets.
An iterative maximum likelihood optimization techniquesea on a modified deterministic
annealing EM (MDAEM) algorithm for multi-target localizah and velocity estimation using
TDOAs is given by Carevicd6). Since the MDAEM algorithm is executed for an assumed
number of targets, Carevi@T) provides a systematic approach for determining which ef th
target models estimated by the MDAEM algorithm are relatetthé true targets. Both the
MFT-based approach and the MDAEM algorithm require thaessimed number of targets is
greater than or equal to the true number of targets. Alsanisesurements are only assumed to
contain clutter/false alarms and the problem of missedctieteis not considered.



For the multi-target localization problem considered here use the frequentist counterpart to
the Bayesian filtering approach, i.e., the maximum likedith@lgorithm. The localization

problem is formulated in two dimensions and the measuresreamtsidered here are the range and
the bearing to the targets. Each sensor acquires sevega ama bearing measurement pairs and
the proposed algorithm estimates the number of targetshaiddorresponding locations based

on the erroneous measurements. The number of targetsambedifferent from the number of
measurements due to clutter and missed detection. Theggd@pproach is a twofold scheme
that includes an EM algorithm to estimate the target locatior a given number of targets and

an information theoretic algorithm to select the target elpide., number of targets and their
locations. The main advantage of the proposed scheme i Htales linearly with the size of

the problem and avoids the curse of dimensionality assxtiatith the traditional MHT-based
multi-target localization scheme. For example, if theee/drtargets,S sensors, aneh
measurements per sensor, the computational complexitiiégoroposed scheme is in the order
of O (N.Sm) while the computational complexity for the traditional satre is in the order of

O (NS’”). Unlike the methods used by Deming and Perlovsl®) &and CarevicZ6), the

proposed approach accounts for probability of detecti@hraissed detection along with clutter
and false alarms.

The structure of this report is as follows: formulation ofliitarget localization problem and
the corresponding solution for the single-sensor sceae@resented in sections 2, and 3,
respectively. A numerical example demonstrating the sisginsor algorithm is presented in
section 4. Formulation of multi-target localization pref and the corresponding solution for
the multi-sensor scenario is presented in sections 5, are$pectively. Numerical simulation
demonstrating the multi-sensor algorithm are presenteddtion 7. Section 8 presents the
results obtained from implementing the proposed algorivinnexperimental data. Finally,
Section 9 concludes the report and discusses the curretrobschallenges.

2. Problem Formulation

Consider a two-dimensional (2-D) scenario where theré\atargets located iik. The target
locations are denoted as
) : 1)

Due to clutter and miss detection, the number of targetslamthrget location set that may
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induce a measurement are jointly modeled as a finite poimigsknown as the Poisson Point
Process (PPP2B). A realization of this PPFE, is denotes as

t:vl tmg tmm -
e[ {[ L [ [T -t

The points in the PPP, i.&., occur in a state spac®= R? and the realizations of the PPP is
defined in a bounded subsRtC S. Itis assumed thdl = (Ty, Ty, ..., Tx) € R. InaPPP,
the pointst; are not necessarily distinct and their order is irrelevartie PPP is fully
parameterized by the intensity function:

At) = Zp% 5(t —Ty), 3)

whered(-) is the Dirac delta function, aneP(-) represents the probability of detection. The
number of points in the PPE, is determined by sampling the discrete Poisson randorahari
M with probability mass function (pmf):

A(t)dt)™
m! R
Them points,t; € R, j =1,...,m, are defined as i.i.d. samples of a random varidbten R

with probability density function (pdf):

Alt)

YOI ®)

pr(t)

T
The number of targets and their locations are unknown, behaa located aﬁSgC Sy] is able
to observe the range and bearing to the targets. The meamurequationisyj = 1,...,m,

L, w il | /(ty; — S2)? 4 (t, — S,)? W,
et LbJ] - Ll"ctan((tyj = Sy)/(te; — Sa)) " We, . ©

The noisew; is assumed to be i.i.d. samples of Gaussian, zero mean pra@ésvariance

0 - .
Yw = [OL)" 2] . Thus, the likelihood can be written as
Oy

l(z]t) = N (z|h(t), Ew) (7)



Let's assume that the each potntin the PPP realizatiog is observed by the sensor and
subsequently, the sensor generates a measuremerit C R?. Lety = (m,{z1, ..., zm}),
thent is a realization of a PPN7,defined on the spack, with intensity

() = [ UaONOd = 32 pP(T)N (2] B(T,).5) + ). ®

wherev,,(z) is the clutter intensity. Thus the measured points are neddes either samples
from one of theV Gaussian densities or from the clutter intensity. Now tloaliaation problem
can be formally defined as follows:

Giveny = (m,{z, ..., z,,}), a realization of the PPRP, and the clutter intensity,(z), find
an estimate of the number of targed$, target locationsT;, Ts, ..., Ty, and the
corresponding probability of detectiop? (T;).

3. Proposed Single-Sensor Solution

The proposed twofold solution to the problem defined in tleviomus section consist of an EM
algorithm to estimate the target locations for a given méalethe intensity and a penalized log
likelihood based information criteria to select the appiate model. Here, the only difference in
the intensity model is the number of Gaussian componentsdh model and their corresponding
locations. Details of the twofold solution is given next.

3.1 EM Method

Assume the model is known, i.e., the number of targets isgiv@iven the number of targets/,
the intensityv(z | T) is the superposition oV weighted Gaussian components along with the
clutter intensity:

N
v(z|T) =Y p’(T)N (z|h(T)), L) + va(z| T), (9)
i=1
where the parameter vector of théh component if’; andT = (Ty, Ts, ..., Tx).

3.1.1 E-Step

The natural choice of the “missing data” are the conditipniadependent random indicés,
kj € {0,1,2,..., N}, that identify which of the Gaussian components generéied t



measurement;. Herek; = () indicates that the measurement is generated by clutter. Let

z. = {m, (z1,k1),. .., (Zm, km)} (10)

denote the complete data. Foe {0,1,2,..., N}, let
Zc(i) = {(Zj, ]%) : ]i?j = ’L} (11)

Letn.(i) > 0 denote the number of indicgssuch that:; = ¢, and let

Ye(i) = {ne(i), z(7) } - (12)

It follows from the definition ofk; thati.(¢) is a realization of the PPP whose intensity is

boli) { PP(T)N (2| B(T). Bw), ifi € {120, N, (13)
va(z | T), if i =0.
Now only considering the first scenariog {1,2,..., N}, the pdf ofy.(i) can be written as
P01 T) = exp (= [ a7 N (210 2 dn ) TT 575 (3BT, 50
T Jikj=i
(14)
and
p 1) = exp (= [ vata Ty ) TT vates| T 5)
/T y!;_[@

Since the superposed components are independent, we have

P (2| T) = pWe(0) | T)p (¥e(1) | T)p (¢e(2) | T)...p (¢e(N) | T)
:exp<—[r (z|T) dz) Hp (Tk;) z]|th HI/CIZ]|T

Jik;#0 Jk’ =0

The log likelihood function ofT" givenz.. is

£(T|zc):—/T Wz|T)dz+ Y log p(Ti,) + Y log N (z; |h(Ty,), Sw)

jik;#0 jik;#0 (16)

+ Z log vu(z; | T)

Jik;=0



Note that the conditional pdf of the missing daté,, . . . , k,,,), givenT andz can be written as

p(z.|T)
p(z|T)

- 11 PP(T) N (2 | 0(Ty), Sw) 1 valz| T)

ik 7#0 v(z;|T) Jik;=0

p(kl,...,km‘Z,T):

Invoking the Poisson Gambit,(k1, . . ., k., | z, T) can be written as
p(klaakm|Z>T) :p(kl|Z7T)p(k2|Z>T)p(km|Z>T) (17)

where the individual pdfs can be written as

PP (T )N (2 |B(Th,), Zw ) _
if k; #0
. — v(z; | T) ’ 37
p(k;|z,T) va(z; |T)
v(z; [T)

(18)
else.

Letn = 0,1, ... denote the EM iteration index, and let the current feasiblaesof T be
T = Tﬁ" - ,TE{P). Now the EM auxiliary function is the conditional expectati
(T]T7) = E,ﬂ ..... o [£(T|2) |27

Substituting the log likelihood yields

Q (T|T™) :—[ru(z|T)dz+Z >
=1 ki=1

N
3D A (3[BT B )
J

kmzl



Note that

N N (2| h(T(), 5y
Z log N (Zj | h(Ty,), EW) ( ,/(Z(‘ T(n?) ) -
ki, skj—1,k541, km=1 ! (21)
(%10 ("), %)
IOgN(Zﬂh(Tkj)v EW) v (z; | T™)
J
Thus,@ (T | T™) can be written as
Q(T|T™ ZQZ (T; | T™) (22)
where
(T, | T™) = / N (z|h(T,), L) dz
. N(zj\h(TE”),Ew) @
3 T o8 A (s BT, B

This completes the E-step.
3.1.2 M- Step

The M-step maximize§ (T | T) over all feasibleT, i.e.,
T+ = arg max Q (T | T(")) . (24)

Assuming there is no functional relation betwegrandT; for i # j, the required M-step
maximum is found by maximizing the expressia@nis(T,- | T(”)) separately. Let

T =argmax Qi (T;[TW),  1<i<N. (@)

%

Before we further proceed, naté ( z; | h(T;), X, ) can be written as

N (z; |h(T;), By ) = mexp —% (z; —h(T,))" S5 (z; — h(T)))| . (26)



Thus

log NV (z; |h(T;), & —log \/det(27%y,) — = (z; — h(T,))" 3! (z; — h(T;)).  (27)

Define the weight; (z, | T™, %,,) as

N (2 |h(T{"), Sw
i (27| T, 2) = (ZJV(ZETT@?) ) 28)

The weightw; (z; | T™, X,,) is the probability that the poirt; is generated by theth
component given the current estimai&®. Now equation 25 can be rewritten as

) _ argmax  — / N (z|h(T), y) dz+ Y wi (z;| T", ) log N (z; | 1(Ty), )
i T =
(29)

ThenTZ(.”“) satisfies the necessary condition:

sz z;| T, Sw) 33! [2; — h(T,)] Vi, h (Ti) =
(30)
/ N (z|h(Ty), L)X [z — h(Ty)] Vi, h (T;) dz

The above condition may be simplified to
j=1 T

Based on the assumptiofis V' (z | h(T;), X ) zdz ~ h(T;) and
J+ N (z|h(T;), £y ) dz =~ 1, the EM update@f."“) is calculated as the solution to the equation

(32)



Define

m

> wi (2] T, 5y 2;
Yo 2 wi (2| T, )
j=1
Now TZ(.”“) is the solution to the nonlinear equation
V@ — s =5, | _ o -
arctan((T{" = S) /(T = S,) | Yo
Thus we have
< 2 1/2
—— + S it —IZ <y, <ZI
n 1+tan2yi ) T 2 — ¢1—2’
ngz +1) — ( :’ ) 12 (35)
Yr,;
_ <_1+tan2(y¢i)) + Sxa elsel
and
T = tan (yy,) (T = 8,) + S, (36)

Given the likelihood function is bounded above, the EM itieranearly always converges to a
local maximum of the likelihood function. However, the cenyence rate is only linear and the
first few iterations are commonly observed to result in gigant improvements in the likelihood
function.

3.2 Information Criteria for Model Selection

The previous subsection provides an approach to estimatartet locations given the number of
targets. Presented in this section is an information thiecspproach to select the appropriate
model, i.e., the number of targets or the number of Gaussiarponents. Model selection can
be approached in terms of the Kullback-Leibler informatdthe true model with respect to the
fitted model. Let(z|T, N) be the true intensity and le{z | T, N) denote one of the fitted

10



models, i.e.,
(z| T, N) Z/\/ (z|h(T;), Ty ) (37)
2| T, N) = ZN<z|h T)), ) (38)

Thus, the true distribution of can be written as

N
Z (z|h(Ty), Sw), (39)
and its approximation
1 N ~
p<z>:ﬁ;N(z|h<Ti>, S ). (40)

Now the Kullback-Leibler information of(z) with respect tq)(z) is

Dia ) = [ pe)1ogp(a) dz — [ o) 10g pla) . (41)
which is a measure of the divergencept) relative top(z). The aim is make the
Kullback-Leibler information small. As the first term on thght-hand side of equation 41 does
not depend on the model, only the second term is relevantanibe expressed as

Wz, o2} IP) = [ logita) pla)ia (42)

T
~ [ 1ogi()dr(a), (43)

-
whereP denotes the true distribution aRd, ..., z,,} is the observed data. Now the sample

estimate of)({z, ..., z,,} | P) is given by
n({z1, ..., Zm} |P Zlogp (z;) (44)
1 ~ ~

:Elogﬁ({zl,...,zm}‘T, N), (45)

where£(-) indicate the likelihood function and equation 45 followsrfr the assumption that the
observations are independent. The biag(dks, . .., z,} |P) as an estimator of

11



n({z1, ..., 2z} |P) is the functional

b(P) = Ep [n({z1, .. 20} IP) = {21, ..., 20} [P)] (46)

whereEp denotes expectation with respect to the true distribulionThus, an information
criterion for model section can be based on the bias-caudog likelihood given by

log £ ({zl, oz} | T N) —b(P), (47)

using an appropriate estimate of the bias term. The intdntsslect the model that would
maximize the above quantity and thus minimizes the Kullblagibler information. In the
literature, the information criteria formed are generatypressed in terms of twice the negative
value of the difference given above, so they are of the form

—210g £ ({zl, oz} | T N) +2b(P), (48)
The intent therefore is to choose a model to minimize thewah equation 48.

3.2.1 Akaike’s Information Criterion (AIC)

Akaike (29) showed thab(P) is asymptotically equal td, whered is equal to the total number of
parameters in the model. Thus from equation 48, AIC selbetsitodel that minimizes

—210g£<{z1, ...,zm}‘T, ]V)%—Qd. (49
For the 2-D localization problem under consideration, theva criterion can be rewritten as
—210g2<{z1, ...,zm}}'f, N)+4N. (50)

Therefore, the present approach would select severateliffeandidates faN and solve the
corresponding localization problem using the EM algorithAfterwards, the AIC associated
with each model is calculated and the model corresponditigettowest AIC is selected as the
estimated model. A summary of the proposed algorithm isgortes! in table 1.

12



Table 1. Summary of algorithm.

Given data:

{z1, ..., Zm}

N
Fit the intensity: v(z| T, N) = > N (z|h(T;), ¥w )
=1

Estimate the parametersV and{T1, ..., Ty}
e Select the candidate modelsV,, . .., N
e FOREk=1:K
— FORi=1:N,

« Initialize T (k) € T
END FOR
FOREM iterationn = 0, 1,... until converges
* FORi =1: N,
. Updateng?H)(k) using equation 35
. UpdateZ\" " (k) using equation 36
+ END FOR
END FOR

Calculate the maximum likelihood; = exp {—Ni} [ v(z; | T(k), Ni)

Calculate AIC(k) = —2log £, + 4N,

e END FOR

e Select the indek corresponding to the minimum AIC:

7j=1

y=min {AIC(1),..., AIC(K),..., AIC(K)}

e Parameter estimates ar§, and T ())

13



4. Numerical Example

Consider a scenario, where there are four targ¥ts-(4) located at

T_ 298 250 267 310
S\ -5 T s )
Following the setup presented in section 2., the measurgntensity is given as

v(z|T) = ZLN(Z |h(Ty), By ) + va(z),

. . 9 0 .
where the known measurement covariance matrx,s= 0 5 10-%]" i.e., the range
< 10-

standard deviation amountsian and the bearing standard deviationito The/;’s are given as
L.y = {0.5732,1.7962,1.2172,0.4135}

and the clutter intensity is given as

Vcl(Z):0.0122N<z|h<[281.25]>7 [900 0 D
0.75 0 0.4874

The sensor location is selected@s= 10 andS, = 0. In order to evaluate the performance of
the algorithm, 200 MC runs were conducted. For each run,thgxer of measurements are
determined by sampling from the Poisson distribution:

(4)"

m)!

par(m) = exp{—4}.
Them measurements are obtained from the mixture pdf:

1 [ 281.25 900 0
ot I h(T,), 0122 h 1
4.0122 ; N (2| BT, Bw) +0.0 N<Z| ([ 0.75 D [0 0.4874])] &)

with mixing probabilities{0.1429, 0.4477,0.3034, 0.1031,0.0030}. Here we use the optimal
subpattern assignment (OSPA) metric to assess the perioentd the localization
algorithm @0). To be specific, we use the OSPA metric of order 1 with cutvaffie 100.
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Given in figure 1 is the histogram obtained from the MC runge number of measurements
and estimated number of targets. Note that the histograthéamumber of measurements
clearly resembles that of a Poisson pdf while the histog@mthie estimated number of targets
clearly favors 4.

140

0 2 4 6 8 10 12

(a) Number of measurements (b) Estimated number of targets

Figure 1. Histogram for number of measurements and estihmatmber of targets.

Figure 2 contains the OSPA metric obtained for each MC runste that the OSPA metric
around the 100 mark indicates the MC runs with a cardinatityreof one while the OSPA metric
around the 200 mark indicates the MC runs with a cardinatityreof two. Note that the

majority of the metrics are well below 25 indicating no caulity error and accurate localization.

250

*
200—*#*** * X% K ****W Hodok **

IR TS PO S
50 ]
D o ko iy
% 50 100 150 ﬁo
MC runs

Figure 2. OSPA metric for each MC runs.

Given in figure 3 is the localization results obtained for ohthe MC trials. For the numerical
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results presented in figure @, = 7 and the measurement are
” < 295.4439 248.0845 266.9659 308.8356
O\ |—=74361| | 7.9683 | |—-19.7274| | 17.9654 |

301.3977| |251.7503 251.5474)
—2.3207 || 6.9274 || 3.2172 '

:
%
15+ -7
P
P
P
-
10f S
7~
~ . B %
5 ~ < bl T .
2] TeSlL T ¢
N
S o _--TST el
1 - SN T~
> - S R ¢
-5 -~ - > < T ﬂf
~N
O  Sensor S ¢
-10t % Target : S
9  Measurement S
1 ~
sk Y¢  Estimate : : N
b ¢
20 ‘ ‘ ‘ : : ‘ Lo
-100 -50 0 50 100 150 200 250 300 350
r-axIS

Figure 3. Single-sensor simulation scenario.

For all MC runs, five different models are selected and th&iresponding AIC are given in
table 2.

Table 2. Models and AIC.

AIC

Ni=2 N, =3 N, =4 N,=5 N, =6
26.7675 24.7321 24.3130 27.1980 31.8099

Thus, the parameter estimates Are- 4 and

2 298.4321| [250.4694| |266.9659 | |308.8356
o\ —4.9096 | " | 6.0468 | |—19.7274| | 17.9654 | |
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5. Multi-Sensor Problem Formulation

This section considers a multi-sensor scenario where #rerg’ sensors located at points

’ [ 2 ‘5] ) . (52)
Sy2 Sys
The sensor locations are known a priori. Following the pgabformulation given in section 2.,

the number of measurements and the measurement set ale joaateled as a PPP. Thus,
consider thes different realizations of PPPs¥™) ¥ ¥():

lp(l) = <m17 {Zgl)v Zél)v cety Z%i}) )

Sty
Sy1

g ey

(S1, Sa, ...,SS):<

0 (@
P = (mg, {zg), zg), o zﬁ?{}) ,

7#(8) - <ms> {Z§S)> ng)’ ceey ZS’fLZ}) :

For¢=1,...,s, thel-th realization, i.e.s)¥), corresponds to the number of measurements and
the measurement set obtained by tkth sensor. The measurement noise is assumed to be
zero-mean Gaussian with known variantg. Now following the similar formulation presented
for the single-sensor scenario, thé&h PPP is modeled via the intensity function

vO(z) =3 pP(T) N (2| (T4, 50) , Bw) + 1 (2).

i=1

Let )., denotes the set of all measurements, i.e.,

P = <ng, {zgl), o zﬁg,...,zg), o z,ﬁ,...,z?), o zfj}}) )
—1

Since the superposition of two PPPs is also a RRE,can be considered as a PPP with intensity

y(z) =Y vz =) (Z pP(T) N (2|h (Ti, S¢) By + vé?(z)) .

/=1 (=1 1=1
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Now p (2.5) can be written as

e S RCL310) S (53)

6. Multi-Sensor Solution

The multi-sensor solution proposed in this section diyefctlows from the single-sensor solution
presented previously.

6.1 EM Method

Given the number of targetd/, the intensity/(“)(z | T) of the/-th sensor is the superposition of
N Gaussian components along with the clutter intensities:

N
V(2] T) =" pP(T) N (2/h (T;,S;), Sw) + 1 (). (54)

1=1

6.1.1 E-Step

First consider thé-th sensor, where there arg measurements. Fgr=1, ..., m,, the natural
choice of the “missing data” for théth PPP are the conditionally independent random indices
k:]@, k:]@ e {0,1,2,..., N}, that identify which of the Gaussian components, i.e. dgrg
generated the measuremegﬁ. Herek; = () indicates that the measurement is generated by
clutter. Let

L0 _ <mz, {20,929, k9, (29 k(é))}> (55)

c J J me? Uy

denote the complete data. Foe {0,1,2,..., N}, let

. l 4 4 .
20(i) = {27, k)« K9 =4}, (56)
Letnt” (i) > 0 denote the number of indicgssuch that:\” = 7, and let

P9(i) = (n(i), 20(i) ) . (57)

18



It follows from the definition ofkj(.g) thate{”) (1) is a realization of the PPP whose intensity is

D I .
, pP(THN (z|h (T, S,),%w), ifie{l,2,...,N};
vy (z), if i = 0.
Now only considering the first scenarioc {1,2,..., N}, the pdf ofyl) (7) can be written as

p (W) | T) =exp <_/7_pD(Ti)N(Z|h(Ti,S€)aZW) dZ)

[T »7man (57 (Te50) ) (9)
Gk =i
and
p(wg)(@)\T) = €xp <—/ Vg)<z) dz) H Vﬁf)(zg% (60)
T

Gk =0

Since the superposed components are independent, we have

p (| T) =p @O0 |T)p (w9 (1)] T) p(W92)|T)...p(¥P(N)|T)

— exp <_ / (z|T) dz) [T »"(10) ( O h(T, 0, S), zw) I v
’7’ J

'E k;”;ﬁ@ j:k;l):@
Let
0 i 7.00)
0 (401m) PP(T0) N (27 [B(Ty0, 80, S ), i kD € {12, N) -
AN AR 0, ® € 10
I/cl(j), Ifkj =10
Then
my
p (20| T) = exp (— [ @) dz) [Tn (2" 17,0) (62)
T ]:1 J
The log likelihood function ofl" glvenz“) is
mye
£(T|2z0) = — / /O(z|T)dz+ 3 log u (zg.@ | Tk@) (63)
7_ J

=1
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Now note that

P (1/)(4) | T) = exp (_ /TV(Z)(Z | T) dz) ﬁ ) (ng) | T) (64)

Thus the conditional pdf of the missing da(d#’, ce kﬁ’), can be written as

© © (,©
p( |T) m™p <Zj |Tk<z>>
O 1O | ® j
p (KO, k) |9, T) = (65)
' K p(HO|T) ]1:[1 v (4] T)

Furthermore, assuming that the sensor measurementsiooedibn the target locations are
independent of each other yields

p (0,28 T)=p (" |T)...p(z9|T) (66)
1T |esp ( A ) 11 (011,0)|  67)
=1 T j=1
and
p (PO, | T) =p (V| T)...p (9| T) (68)

s my
= [exp <—/ vz |T) dz) H ) <z§z) | T)
1 T j=1

Now the conditional pdf of the missing data for all sens@sﬁ,l), cee kﬁ,ﬂ, cee k:f), cee k:,(;?)
givenT andy", ... ) can be written as

p (k{”, B ONPVICIN .,zp(S),T) _

The log likelihood function ofl’ givenzﬁl), e ,z((f) is

S my
£(T| 2V ,z((f)) = Z [— /rV(Z)(Z | T)dz + Z log p¥ <z§-€) | Tk§“) (72)
=1 j=1
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Giveny(z | T) = Y vY(z| T), the log likelihood function can be rewritten as

/=1

(T |z,...,20) = / z|T) dz+ZZIOg,u <Z§-£)\Tkgl)>

(=1 j=1

Letn = 0,1, ... denote the EM iteration index, and let the current feasiblaesof T be
T = (Tﬁ"), o TE{P). Now the EM auxiliary function is the conditional expecteti

Q(T|T™) =E [£(T|2,...,29) | W,

) | 4p() . ap(s) 1)

N N s

@ T

Ma /J(a (Zﬁ |Tk(a))
=3 N e, 2T ]

V=0 k)= a=1 p=1 V) (Z(Ba) | T(">

Substituting the log likelihood yields

Q (T|T™) :—/Tv(z|T)dz+

> 3 S Se (417,0)

KV=0 k=0 L= 5=
Thus
s my N N
TL OIS S s (51T0)
(=15=1 10— kD kO R k) =0
X = — / v(z|T)dz
a=1 p=1 V(a) (ZB |T n ) T
Note

s m 0
Sy e (%170)

=1
BU=0 k=0 L= = v (z§5)|T>

N N
— (
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Thus we have

s my N N
n l
QT =3 Y > og 1 (41 T0)
C1I= 02 4D kO 10, k0
. (78)
M(Z) < 1 | T,(Cu?))
X — [ v(z|T)dz
v (27T /r
Note that
x ()
Z log 'u(é) <ZJ ) | Tk“)) -
W O L0 ) 70yl (z(.é)|T(")>
ky s kg 2k ks =0 J (79)
{4 n
@ (,© n (2 T’(f"‘?))
log 1 (z- | T, !
A () (zy) | T(n))
Thus,@ (T | T™) can be written as
N s my © M(Z) <Z§Z) |T§n)>
(T|T™) Z ZZ log <zj |Ti> — - / Wz|T)dz  (80)
Now substituting equation 61) (T | T(") can be rewritten as
s I/(f)(z(é))
n C J
Q (T|T™) = / z|T) dz+ZZlog . TE—
=1 j=1 z; | T
n £) n
N5 e . o pP(T} )N(Z§ |h(T{”, $)), & )
>SS 10g P (TYN (2 [0(T;, 5), B ) =
i=1 =1 j=1 v (z;” | T )
(81)

Recall that

Wz |T) =3 (| T) = (_Z PP(T)N (2h (T;, S) . Sw) + uéf’(z))
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Thus,@ (T | T™) can be written as

(82)
Thus
N
Q(T|T™) =" Qi (T:|T™) + Qu (T™) (83)
=1
where
s ¢
Qi (T:| ™) = 37 [Z log p”(T) A" (2" | (T, ). S )
=1 L j=1
84
PPN (27 (T, S50, S ) (684
X — [ PP(TH)N (2|h (T, S¢),Xw) dz
4
"o Z(>|T<n>> T
J
and
Wy _ % 0 N 0oy (@)
Qu (T™) = —/yc (@) dz+S " log 10(2") —Ld % (85)
( ) ~ . ! ; 1 \Z; 0 <Z§Z)|T(")>
This completes the E-step.
6.1.2 M- Step
The M-step maximize§ (T | T™) over all feasibleT, i.e.,
TC+) — arg max Q(T|T™M). (86)
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Assuming there is no functional relation betwegrandT; for ¢ # j, the required M-step
maximum is found by maximizing the expressidps(T; | T™) separately. Let

T argmax Qu(T,[TY), 1<i<N. &)

Before we further proceed, note th’ﬂ’t( zg.z) |h (T, S;), Ew) can be written as

1
N<Z§'€)|h(TiaSz)> Zw) :WGXP [—

<z<?> _ h(T,—,Sg))T
3! (z@ —h(T,-,Sg)>].
Thus

log A <z§@ Ih(T;,S,), zw) — — log \/det(27 D)

() 55 (0 1)

2\ w
Define the weight, " <z§5) | T, EW> as

n YA n
© (. ® pP(T, ))N<Z§)|h(T§ )50, Zw>
w; (zj |T(”),ZW) = ‘ (88)
v(© <Z§-Z) ‘ T(”)>

The weighto!” (zg.z) | (), Zw> is the probability that the poirt” is generated by theth
target given the current estimaf&€$”). Now equation 87 can be rewritten as

S

my
(n+1) _ 0 @ (@0 m(n
T, = argmax E [ 'E_l log N <zj | (T, Se), Ew> w; (Zj | T¢ )72“,) +

! (89)

my
> log (Tl (21T, 3, ) - / p"(T)N (2fh (T; 5¢), Sw) dz]
j=1 T

Unlike the single-sensor case, here we do not consider tiferelit scenarios based oA (T;).
Herep”(T;) = I, are assumed to be scalar quantities that need to be estielatepwithT.

Here we assume that’(T;) are scalar quantities, indicated Asthat need to be estimated along
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with T;. Thus the optimization problem in equation 89 can be reamits

T = arg max [ 3 log N é I h(T;, S)), EW> w!? (zy) | 7™, EW> +
= (90)
Z log i (20| T¢ >_/IiN(z\h(TZ-,Sg),EW) dz]
T
1) = arg max [ 3 log N | h(T;, S), EW> w' <z§z) | T, EW> +
= (91)
Z log I; w” <ze )_[rIiN(z\h(Ti,Sg),Ew) dz]

From equation 90Tf."+1) satisfies the necessary condition:

ZS: [%wi@) (zy) ‘ T(n)7 ZW> 2‘;1 [Zy) “h(T,S )] Vo h(T;, S)—

(=1 L j=1 (92)
/ IZN(Z|h(TZ, Sg) s EW) E‘;l [Z — h(TZ, Sg )] vT%h(T27 Sg) dZ] =0
T

The above condition can be rewritten as

3 {o [S5 ) - i) -

(=1

(93)
[rIiN(z|h(TZ—,Sg),ZW) lz—h(T:,S) de

VTih(Ti,Sg)} :O

Based on the assumptign AV (z|h (T;,S;) ,Xw) zdz ~ h (T;, S¢) and
J+N (z|h(Ty), Xy ) dz ~ 1, the EM update@l(."“) is calculated as the solution to the equation

s my S my
Z Z W' (zgz) | 7™, Ew> zy) = Z Z W' (zgz) | 7™, Ew> h (TZ(-"H), Sg) (94)
=1 j=1 =1 j=1
Due to the nonlinear nature of the above equation, theré¢ raislosed form solution to above
equation. There exist several ways to solve the above @msagich as Newton'’s root finding
algorithm. On the other hand, one can also solve equationr8dtly using a search method or a
gradient descent method.
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On the other hand,f"“) satisfies the necessary condition:

s

DI (z§.€)|T("),ZW)l—//\/’(z|h(TZ—,SZ),ZW) dz | =0 (95)
i=1 i Jr

(=1

Thus
S my
WO (0T, 5
]i(n-i-l) — sézl j=1 (96)
N (zlh(T;,S0),%y) dz
=1 7T

6.2 AIC-Based Model Selection

The previous subsection provides an EM approach to estitinatarget locations given the
number of targets. Presented in this approach is an infasmtteoretic approach to select the
appropriate model, i.e., the number of targets. Similah&single-sensor scenario, here we use
the AIC to select the appropriate number of targets.

As seen in the E-step, the probabilityss"), ..., () | T) can be written as

s

W @ |T) = X (- © Td)mz O (29T
p (¢ ¢|)Hlep /rV(Z|)Z£[1V<ZJ|>

/=1

(97)

Since [, v\ (z|T) dz = N, whereN is a candidate for the number of targets, the likelihood
£ (T, N|ypO®, .., zp(s)) can be written as

S my
Iy (T, Ny, .. ,z/;“)) _ [exp (—N) 1+ (zf’ | T) (98)
=1 j=1
Now following the information given in subsection 3.2.1e¢tAIC can be calculated as
A|c:—210g£(T,N|¢<l>,...,¢<5>)+6N. (99)

Therefore, the proposed approach would select severaleiift candidates fa¥ and solve the
corresponding localization problem using the EM algorithAfterwards, the AIC associated
with each model is calculated and the model correspondititgettowest AIC is selected as the
estimated model.

26



7. Multi-Sensor Example

Consider a scenario, where there are four targ¥ts-(4) located at
T_ 298 250 267 310

S\ -5 7|18 )
and three sensors located at

Sar| _ | 10 San| _ | —15 N S| _ |-15|
Sy, —0.5] " | S, 25 Sy 2

Following the setup presented in section 5., the measuramtensity corresponding to the-th
sensor is given as

v (2| T) =Y pP(TH) N (2lh (T, Sp), Sw) + v (2).

cl
=1

For simplifying the problem here we assum§?(z) is the same for alf € {1, 2,3} and

: , 9 0 :
pP(T;) = I;. The known measurement covariance matriXjs= 0 5 10-%]" i.e., the range
< 10-

standard deviation amountsdaon and the bearing standard deviation amount®toThe /;’s are
given as
I.4 = {0.5525,1.8399, 1.2119, 0.3957}

and the clutter intensity is given as

Va(z) = 0.0122N (z | h ([281'25]> ’ [900 0 ] ) |
0.75 0 0.4874

Thus the intensity corresponding to the PPP consists of@dismrements among the three sensors
is given as
3 4
vz) = (Z LN (2[h (T, 5¢), Bw) + u£f><z>> .
/=1 =1
In order to evaluate the performance of the algorithm, 200rvi€3 were conducted. For each
run, the number of measurements for each sensor is detaettmyrgampling from the Poisson
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distribution .
(4)

m)!

exp {—4}.

For the/-th sensor, then, measurements are obtained from the mixture pdf

)LV i)

with mixing probabilities{0.1377, 0.4586, 0.3021, 0.0986, 0.0030}. After obtaining the
measurements for all three sensors, the proposed EM dgoistexecuted for each model using
the appropriate initial condition selected from the follog/set:

(] 0Bl F L)

Here we consider the following five models:

Pm (m) ~

281.25
0.75

1

4
— ]Z-/\/'(z|h(TZ-,Sg),Zw)+0.0122/\/<z|h([
4.0122 [;

Ny :2,N2:3,N3:4,N4:5, andN5:6.

For each model the AIC is then calculated according to therimétion given in subsection 6.2
and the model corresponding to the minimum AIC is selecteati@sorrect model.

Here we use the OSPA metric to assess the performance and@cofithe proposed localization
algorithm @0). To be specific, we use the OSPA metric of order 1 with cutraffie 100.

Given in figure 4 is the histogram obtained from the MC rungti@number of measurements for
all three sensors. Note that the histogram for the numbereafsurements resembles that of a
Poisson pdf with a rate of four.
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(a) Sensor 1 (b) Sensor 2

50

(c) Sensor 3

Figure 4. Histogram for number of measurements.

Figure 5a contains the histogram obtained from the MC runthianumber of estimated targets.
The histogram for the estimated number of targets cleadicates that there are four targets.
Figure 5b contains the OSPA metric obtained for each MC rivate that the OSPA metric
around the 100 mark indicates the MC runs with a cardinatityreof one while the OSPA metric
around the 200 mark indicates the MC runs with a cardinatityreof two. Note that most of the
metrics are well below 50 indicating no cardinality errodatcurate localization.
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Figure 5. Estimated number of targets and OSPA metric fdn &€ runs.

Given in figure 6 is the localization results obtained for ohthe MC trials. For the numerical
results presented in figure &, = 6, mo = 2, mz = 5 and the measurement are
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Figure 6. Individual sensor measurements and EM solutions.

350

For all MC runs, five different models are selected and theecbmodel is selected as the one
with lowest AIC score. Thus the parameter estimates\are 4 and

297.1037
—7.3038

Y

311.0966

Y

20.7981

267.6813
—17.5251

Y

250.3221
5.1730

The fused solution along with the individual measuremerggaven in figure 7, where the fused
solutions are displayed as green stars. As shown in figuren8os one yields six measurements
(indicated as blue diamonds), sensor two yields two measemes (indicated as cyan squares),
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and sensor three yields four measurements (indicated asntzaigiangles).
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Figure 7. Multi-sensor fused solution.

8. Experimental Results

This section presents the implementation of the propoggatighm for multi-shooter localization
using a network of acoustic GDSs. The individual GDSs arepmsad of a passive array of
microphones that is able to localize a gunfire event by meagtine direction of arrival for both
the acoustic wave generated by the muzzle blast and thewhwelgenerated by the supersonic
bullet 2-5. After detecting a gunfire, the individual sensors repoeirtsolution, usually in the
form of range and bearing to the shooter locations relatitbé sensor, along with their
orientation and GPS positions to a central node over a conuaion network. At the central
node, the individual sensor solutions are fused along WehGPS positions to yield a highly
accurate, geo-rectified solution. More details on shootlization using a network of acoustic
GDSs can be found in referencéd £37).

Experiments were conducted for the quad symmetric sensmiaton given in figure 8 using a
sensor network composed of nine sensors. The sensor pspireads over 25 m front to back.
In figure 8, the shooter position is marked by a red human figure the shot line is marked by a
translucent red line. The GPS locations of the three sheaigtions are given in table 3.
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Figure 8. Quad symmetric sensor formation.

Table 3. Shooter Locations.

Shooter Position| GPS - East (m) GPS - North (m)
Shooter Position 1 283309 4709539
Shooter Position 2 283270 4709567
Shooter Position 3 283337 4709632

The sensor locations and headings correspond to the quadelyimformation are given in
table 4.

Table 4. Sensor locations and heading for quad symmetric

formation.
Sensor| GPS - East (m) GPS - North (m)| Heading (deg)
Swi 283130 4709427 40
SW2 283129 4709434 39
SW3 283165 4709401 31
UGS1 283133 4709431 39
UGS2 283169 4709398 30
UGS3 283168 4709405 31
VM1 283127 4709431 40
VM2 283172 4709402 30
VM3 283177 4709395 29

Here, 30 shots were fired for each shooter position. For eaghhe number of measurements
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reported by each sensor is modeled as the Poisson distrbuti

(3)"

m)

par(m) = exp{—3}.

Following the formulation presented in section 5., themeasurements obtained for théh
sensor are modeled as i.i.d. samples from the mixture pdf

4709579.33 1000 0
283305.33 |/ | 0 1.0

with mixing probabilities{0.4378, 0.4853,0.0728,0.0041}. The covariance associated with
individual measurements are obtained from the confidenaghtgeprovided by the sensor33).
After obtaining the measurements for all nine sensors, tbpgsed EM algorithm is executed for

each model using the appropriate initial condition seléctelere we consider the following four
models:

1 3
3.0122 ;

Ny =2, Ny=3, N3 =4, andN4 = 5.

For each model the AIC is then calculated according to thermétion given in subsection 6.2
and the model corresponding to the minimum AIC is selectati@sorrect model.

Similar to the previous results, here also we used the OSRAmoé order 1 with cut-off value
100 to assess the performance and accuracy of the propasgidddion algorithm 30).

Given in figure 9 is the histogram obtained from the MC rungii@rnumber of measurements for
all nine sensors. Note that the histogram for the number afstnements resembles that of a
Poisson pdf with a rate of three.
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(a) Sensor 1 (b) Sensor 2 (c) Sensor 3

(d) Sensor 4 (e) Sensor 5 (f) Sensor 6

(g) Sensor 7 (h) Sensor 8 (i) Sensor 9

Figure 9. Histogram for number of measurements for eachrewrpatal runs.

35



Figure 10 contains the histogram obtained from the 30 ewxparial runs for the number of
estimated targets. The histogram for the estimated nuniliargets clearly indicates that there
are three targets.

30

251

20

15F

10

Figure 10. Estimated number of targets.

Figure 11 contains the OSPA metric obtained for each exmariahruns. Note that most of the
metrics are well below 20 indicating no cardinality errodasery accurate localization.
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Figure 11. OSPA metric for experimental runs.

Given in figure 12 is the localization results obtained foe ofithe experimental trials. For the
numerical results presented in figuren®, = 2, my = 6, m3 = 1, my = 4, ms = 4, mg = 2,
my = 4, mg = 3, andmg = 3. In figure 12, the measurements obtained for each sensors are
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denoted as blue diamonds, the true shooter locations acetkas red stars, the sensor location
is denoted as yellow circles, and the estimated shootetitosaare represented as green stars.
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Figure 12. Experimental results for individual sensor meaments and EM solutions.

The fused solution along with the individual measuremerggjaven in figure 13, where the fused
solutions are displayed as green stars. As shown in figurth&3used solution is more accurate

compared to the individual measurements.
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Figure 13. Experimental result for multi-sensor fusion.

9. Conclusion

This report presents the finite point process approach tomthig-target localization problem for
the single-sensor as well as multi-sensor scenario. He@#sumed that target identification is
not possible, and therefore, no association between theureraents and targets are available.
Furthermore, the number of targets in the surveillanceoreg unknown, and due to the limited
range of the sensors, missed detections can occur and genpeeof clutter can induce false
alarms. Here we propose an EM algorithm to estimate thettergations while the information
criterion, AIC, is used to estimate the number of targetse pireliminary implementation of the
proposed algorithm on synthetic data produced accuratétsesmplementation of the proposed
algorithm on experimental data obtained for the multi-sbolwcalization problem further
confirms the numerical results. Here we use the optimal dtdypaassignment metric of order 1
with a cut-off value of 100 to assess the performance of tbaliwation algorithm. As the results
given in sections 7. and 8. indicate, the finite point proeggsoach is able to accurately estimate
the number of targets and their locations in the presenckittécand missed detection. Future
work will include decreasing the sensitivity of the proposdgorithm to the initial guess with the
use of multiple-thread search and deterministic anne&@Mgalgorithm 38). The current
scheme can also benefit from a systematic approach forisgigxitential target models.
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